

Scope Phenomenon

Whack!

How did you know that those energies were being used?	
In what ways do you use each of these energies in your everyday life?	
What would happen if the child in the video increased the speed of the w	— /hack?
What would happen if the child decreased the speed? How is this related mechanical energy that the child used?	to the

Name:	Date:	

Energy Stations

Data and Observations Recording Tables

Station 1: Ramp It Up

	Height on the Ramp	Distance the Car Traveled
Trial 1		
Trial 2		
Trial 3		

Station 2: Shed Some Light

	Observations
Prism without Flashlight Shining on It	
Prism with Flashlight Shining on It	

Station 3: Sound Waves

	Observations
Paper Towel Tube	
Hand	

Station 4: Turn Up the Heat Energy

	Observations
Hot Water	
Ice Water	

Name:	Date:	

Energy Stations

Claim-Evidence-Reasoning

Prompt

Think like a scientist, and describe how energy was present in one of the systems from the Energy Stations today.

Claim:			
Evidence:			
Reasoning:			

Energy Stations

Rubric for Writing a Scientific Explanation

Points Awarded	2	1	0
Claim	The student answered the question, and it was accurate based on data.	The student answered the question but was inaccurate.	The student made no claim or did not answer the question.
Evidence	The student cited accurate data and observations from one of the stations.	The student cited inaccurate data and observations from one of the stations.	The student cited examples but did not use observations and data from one of the stations.
Reasoning	The student cited the scientifically accurate reason using correct vocabulary and connected this to the claim. The student accurately showed that they understood the cause-and-effect or stimulus-response.	The student cited a reason, but it was inaccurate or did not support the claim. The student's reasoning did not use scientific terminology or used it inaccurately.	The student did not provide reasoning, or the student just restated the claim.

Energy Station Cards

Station 1: Ramp It Up

- 1. Use the toy car for each trial.
- 2. Set up a ramp using the materials provided at the station. Once you have set up the ramp, do not adjust the steepness for any of the trials.
- 3. Measure out three different heights on the ramp as starting points: low, medium, and high.
- 4. Release (do not push) the car from each of the three heights.
- 5. After each trial, carefully measure the distance the car traveled after it left the ramp.
- 6. Record your observations on your Student Handout.

Station 2: Shed Some Light

- 1. Hold the prism in one hand close to the wall. Note what you see.
- 2. Turn on the flashlight, making sure it is not pointed toward anyone's face.
- 3. Hold the prism in one hand close to the wall, and shine the flashlight on it.
- 4. Move the flashlight around to shine on different parts of the prism.
- 5. Observe the wall behind the prism and flashlight.
- 6. Record your observations on your Student Handout.

Station 3: Sound Waves

- 1. Cover the clear container with plastic wrap securely.
- 2. Put the rice on top of the plastic in the middle of the clear container.
- 3. Hold the cereal box and paper towel tube next to the clear container.
- 4. Hit the box with the tube while watching the rice.
- 5. Now, hit the box with your hand while watching the rice.
- 6. Record your observations on your Student Handout.

Station 4: Turn Up the Heat Energy

- 1. Fill one clear container with hot water and one clear container with ice water.
- 2. Take the bottle with the balloon and place it in the container of ice water.
- 3. Then, move the bottle to the container of hot water.
- 4. Record your observations on your Student Handout.
- Move the bottle back to the ice water.
- 6. Record your observations on your Student Handout.

Name:	Date:

Pop Fly Entry Document

Hello, baseball fans!

Your local Little League team is having a problem catching fly pop-ups when they are out in the field. To improve their fielding, our players need to practice catching fly balls, but we do not have a pop-fly launcher.

We are asking your class to design and build a working prototype of a pop-fly launcher for us out of recycled and repurposed materials that will later be made into an actual launcher for use by the team.

Your prototype should be able to throw a large marshmallow through the air to a height of at least one meter and a distance of one meter. You will be given 45 minutes and a budget of \$30 to complete the prototype.

Your team will present your prototype to an audience. You must create a design sketch showing your prototype and where the energy and energy transfer forces are located. Also, identify the type of force that is causing the marshmallow to fly into the air.

To be considered by the league you must show how your pop-fly launcher works. Members of the league will decide which team's design is the one that best meets their criteria and stays within budget.

Best wishes and happy engineering!

Your Little League

Expert Roles

Budget Manager

The budget manager's job will be to keep the team within the \$30 budget. You will keep track of the materials the team buys and report how much your prototype cost to build when you do your team presentation.

Data Manager

As the team data manager, you will be responsible for measuring the distance and height of each of the tests you do for your prototype. You will need to create a data table and make several trials to be sure your data is accurate.

Materials Engineer

As the materials engineer, it is your job to select and get the materials you want to use from the supply table. You need to guide your team in making the decisions to build a prototype that will meet the criteria.

Project Manager and Team Leader

As the project manager and team leader, you are responsible for seeing the project through to completion. You will design the sketch and help build the launcher with your team. You will need to keep the rubric in hand and constantly refer back to it to make sure that your team is meeting the criteria.

Name:	Date:	

Pop Fly Expert Mini-Workshop

Budget Manager

As the budget manager, you are responsible for managing the team's budget and spending no more than \$30 for all the materials your team decides to use.

Work closely with the materials engineer in selecting the materials you will use for the pop-fly launcher.

Help your team to make decisions about the presentation of your launcher and make sure that all the criteria have been met.

You will also need to tell how much your team spent for the launcher in your presentation. You and your team members will present your final product along with the reasoning for your decisions. The cost of the items is as follows:

\$10.00 each
\$10.00 each
\$5.00 each
\$10.00 each
\$1.00 each
\$1.00 each
\$0.25 each
\$1.00 each
\$5.00 each
\$5.00 each
\$0.25 each

Name: Date:

Pop Fly Expert Mini-Workshop

Data Manager

Your job as data manager will be to measure how far and how high your pop-fly launcher is able to shoot marshmallows. Be sure once the launcher is built that you try to measure exactly each time. Make a data table in your lab journal to keep track of your data.

As an engineer, you want to be accurate in your measurements, so you may want to tape down your meterstick and hold the launcher in the same place each time. It might be a good idea to have the team practice launching it and the person with the best launch should be the one to present.

When you measure, be sure to measure in metric and use a meterstick. Test the launcher three times after each change in design to be sure to get a good measurement.

When your group presents their launcher, your job will be to provide the data to show how far it is able to shoot.

Name: ַ	Date:	

Pop Fly Expert Mini-Workshop

Materials Engineer

As the materials engineer, your role is to ensure that your team develops a design blueprint for the pop-fly launcher. The sketch needs to be drawn on chart paper. All parts should be identified and labeled.

Refer to the rubric and the Entry Document to determine if the team's solution meets the criteria for the launcher—shoot a marshmallow 1 meter in the air for a distance of 1 meter.

You will be the only person who can go to the supply table to get materials. Your team may look at the items on the supply table but only you can bring them back to your table.

Work with the budget manager to be sure you stay within the \$30 budget. If you go over, your design will not be counted.

Materials available to you include:

- 1 piece of chart paper
- 3 colors of marker
- ruler or meterstick for drawing straight lines

Materials from the supply table can include:

Cardboard piece

Pencil

Paint stirrer

Rubber band

Brad

Tape

String

Plastic bag

Plastic cup

Plastic spoon

Marshmallow

Name: ַ	Date:	

Pop Fly Expert Mini-Workshop

Team Leader and Team Rubric

As the team leader, you are to guide your team in the completion of the sketch of the pop-fly launcher and in making the prototype out of the materials available to you.

Your initial sketches can be small, but the final design should be large and on chart paper. The materials engineer should work with you on the sketches. Make sure you use arrows to show where the energy and energy transfer forces are working.

Be sure everyone on the team gets to help build and test the launcher. Work at being a great team that listens to and helps each other.

Your job is to also plan the presentation of your product and make sure that all the criteria have been met and your launcher works!

You and your team members will present your final product along with the reasoning for your decisions.

Rubric for a Problem/Project Based Learning Challenge

				1
Category	Expert (4)	Competent (3)	Beginner (2)	Novice (1)
The problem is clearly identified and the solution addresses the problem	Clearly identified the problem and the solution was clearly outlined.	Clearly identified the problem and the solution was identified.	Identified the problem but did not completely address the solution.	Did not address the problem or the solution did not solve the identified problem.
Recommendation met criteria as outlined in Entry Document	Recommendati on (Claim) was supported by at least four pieces of valid evidence and linked to geoscience processes.	Recommendation (Claim) was supported by at least two pieces of valid evidence and linked to geoscience processes.	Recommendation was not supported by appropriate or sufficient evidence linked to the geoscience processes.	Presentation did not include a recommendation.
Participation	Worked well in expert roles and each person was helpful to other members of the team. All participated and were on task.	Worked well as a team and supported each other when needed. All participated equally.	Needed assistance in working as a team and did not equally share the work for the team.	Required teacher direction in being a team and sharing the work to complete the task.
21 st Century Skills Collaboration	Group respected all team members.	Group often shared decision making.	Did not act as a team in decisions.	Group did not get along.
Scientific Content shows depth in understanding and is applicable to the solution of the problem.	Solution showed understanding of energy and energy transfer forces and patterns of motion.	Solution showed connections between energy and energy transfer forces and patterns of motion.	Solution showed knowledge of energy and energy transfer forces and patterns of motion.	Solution did not show knowledge of energy and energy transfer forces and patterns of motion.

Name:	Dat	:e:

Pop Fly Individual 21st Century Skill Rubric in Problem/Project Based Learning Challenge

Collaboration	Expert (4)	Competent (3)	Beginner (2)	Novice (1)
Active Team Member	share ideas, helped to make them clear, and	kept track of time for	, ·	Had to be reminded of work that needed to be completed.
	Took pride in work, accepted feedback graciously, and tried to	feedback to the team about their work. Worked hard to have a	the feedback offered and tried to use it in the	Did not provide feedback and was not willing to incorporate feedback from the team on the product.
Attention to Team Tasks and Responsibilities	member did not understand something and took action to help.	responsibilities to the team and did not allow	team. Sometimes was	Did not share ideas with other team members. Often was off task and needed reminding and redirection to stay with group.
	team when another member was absent. Provided	completed own work.		Did not help the team solve problems; may have caused problems. Did not offer to help others.

Name:	Date:	
		_

Preview and Predict

Before you read: Follow the directions and answer the questions in each part of the table below.

part of the table below.	
Preview	Predict
What is the title of this chapter?	What do you predict you will learn from reading the text?
Read all the bold headings and picture captions.	Describe two words you were introduced to and what you have already learned about them.
List all the objects you will be learning about when you read.	Describe a time when you saw one of these objects being used. How was it helpful?

Name:	Date:

Describe and Draw

While you read: Write a description for each type of energy. Then, draw a picture that shows that type of energy in a system to illustrate your description.

Describe sound energy.	Draw an image.
Describe heat energy.	Draw an image.
Describe light energy.	Draw an image.
Describe motion.	Draw an image.

Name:		Date:	
Energy in a Sy	/S	tem: Comic Strip	
After you read: Use each box belowed Be sure to include sound, light, head		to draw and describe one form of energy and motion.	y.
] '		